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Abstract
We analyze a bargaining game where an anchor player bargains sequentially with
n non-anchor players over the division of a pie in the presence of third-party trans-
fers and show that there exists a unique perfect equilibrium. A lump-sum transfer is
jointly shared by all players, while a transfer proportional to a player’s share affects
only the party that has to make that transfer. When lump-sum transfers are zero, the
anchor player and each non-anchor player bargain as if there is no further bargain-
ing. It turns out that the anchor player and the last non-anchor player are in the most
disadvantageous position with our bargaining protocol.

Keywords Sequential bargaining · Anchored bargaining · Tax incidence

JEL Classification C78 · C22 · C72

1 Introduction

An n-person pure bargaining problemdealswith a situationwheremultiple parties split
a pie with a unanimous agreement. The outcome depends on the bargaining procedure
used.

Rubinstein (1982) introduced a bargaining game where two players make alternat-
ing proposals on the partition of a pie in possibly infinite rounds until they reach an
agreement. The costly time lapse between bargaining rounds provides an incentive for
players to come to an agreement. He shows that there exists a unique perfect equi-
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librium for the game. The equilibrium outcome approaches the Nash (1950, 1953)
solution as the time lapse approaches zero. It has been well known [see, for instance,
Shaked’s argument in Sutton (1986) and Herrero (1985)] that Rubinstein’s result may
not obtain in n (≥ 3)-person extensions.

Jun (1987) andChae andYang (1988, 1994) introduced an extensionofRubinstein’s
game to a multi-person bargaining situation and showed that there exists a unique
subgame perfect equilibrium. In their n-person games, a player proposes the share
to another player. If the second player accepts the proposal, the game essentially
becomes an (n − 1)-person game. If the responding player rejects the proposal, the
game becomes another n-person bargaining with a permutation of players.1

In many real-life bargaining situations, there is a fixed player who simultaneously
or sequentially bargains with other players. Let us call such a player an anchor player.
Someworks in the literature aremotivatedbyCoase’s railroad-farmer problem,where a
railroad company, an anchor player, has to obtain permission from farmers to undertake
a project.2 Among them, Cai (2000) analyzes a bargaining game where the order of
non-anchor players is fixed, but the order of their agreements with the anchor player
can be endogenous. Since every non-anchor player wants to hold up the bargaining
process in the hope of getting a larger share, delay can arise in equilibrium. Xiao
(2018) analyzes a game where an anchor player chooses the order of non-anchor
players and shows that the anchor player will choose non-anchor players with smaller
disagreement payoffs first. Lee and Liu (2013) analyze a game where a non-anchor
player demands his share based on the reputation of the anchor player. If an anchor
player rejects the offer, a random exogenous payment is made by the anchor player to
the non-anchor player. They show that an anchor player may reject even an attractive
offer to build up reputation. Genicot and Ray (2006) analyze amodel where a principal
offers contracts to some agents, and the payoffs of agents without contracts decrease
as the number of such agents decreases. Iaryczower and Oliveros (2017) analyze a
model where one or two principals make offers to a probabilistically determined pool
of agents. They show that the agents can be better off with a single principal than with
two competing principals when there are positive externalities among agents.

In this paper,we analyze a bargaininggamewhere an anchor player bargains sequen-
tially with n non-anchor players over the division of a pie in the presence of third-party
transfers. One key characteristic of the protocol is that the anchor player can move to
the next stage to bargain with the next non-anchor player only if the anchor player
reaches an agreement with the current opponent. In a two-person Rubinstein-type
alternating-proposal bargaining game, the outcome is determined by balancing the
bargainers’ impatience, measured by delay premium, which is the amount a player
is willing to give up in order to avoid delay. Rubinstein’s existence result depends
critically on the assumption that the delay premium is an increasing function of the
size of the stake. We show that there exists a unique perfect equilibrium for our model
if the delay premium is a linear function of the size of the stake. The protocol is the
only one we are aware of that yields a unique perfect equilibrium for any discount

1 Krishna and Serrano (1996) obtains a similar result for a variation of the model where if k players accept
a proposal then the game is essentially reduced to an (n − k)-person game.
2 See Coase (1960).
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factors with an outcome which is different from that of Chae and Yang (1988, 1994)
for an n-person game.

The protocol can be applied to situations where there is a hierarchy among non-
anchor player. The protocol is not fair to every participant. It turns out that in this
setup the anchor player and the last non-anchor player are in the most disadvantageous
position, for the anchor player has to reach an agreement with the non-anchor player
at each stage before it can move to the next non-anchor player. Among the non-
anchor players, earlier players in the hierarchy have advantages. The protocol may be
applicable to the following kinds of situations:

Example 1 In order to implement a real-estate development project, the developer has
to first secure the land from the landowner, then find a construction company to build
structures, and then find people who want to occupy the structures built. What is left
of the value of the project becomes the developer’s profit.

Example 2 An estate has to be split among a group of hierarchical claimants. A lawyer
negotiates with all claimants and will keep what is left of the estate after securing
agreements from all claimants.

Example 3 When a firm goes bankrupt, the remaining value of its assets has to be
distributed among the creditors, typically with a preset order of claims. An equity
holder takes some portion of the remaining value in many real world bankruptcy
cases.3 Such an equity holder may have taken the role of an anchor player in our
model.

In all of the above examples and in most real-life situations, claimants need to
pay taxes to the government and intermediation fees to intermediaries out of their
revenues. Thus, in our model, we will assume that a player has to make a transfer to a
third party if an agreement is reached. The transfer can be negative as in the case of a
subsidy. The transfer can be lump-sum or proportional to a player’s gain.Wewill study
a general case that allows both lump-sum and proportional transfers. We show that
in equilibrium a lump-sum transfer is jointly shared by all players, but a proportional
transfer affects only the player that has to make that transfer. In particular, if lump-sum
transfers are zero, at each stage the anchor player and each non-anchor player bargain
as if there is no further bargaining.

2 A bargainingmodel with third-party transfers

Players P0, P1, . . . , Pn bargain over the split (s0, s1, . . . , sn) of a pie π so that s0 +
s1 · · · + sn = π . When all players reach an agreement, Pi receives payoff xi (≥ 0)
after making some transfer to a third party. The third party could be the government,
in which case the transfer would be a tax, or an investor, in which case the transfer
would be a return on the investment. The transfer could be lump-sum or proportional
to what a player receives from bargaining. We will consider a transfer scheme that
encompasses both the lump-sum and proportional cases: xi = (1−τi )(si −Ti ), where

3 See, for instance, Bharath, Panchapegesan, and Werner (2010).
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τi < 1 and Ti ∈ R. If τi < 0 or Ti < 0, Pi actually receives some payment from a
third party. It should be noted here that Ti is different from the usual breakdown payoff
in that it affects a player’s payoff only if an agreement is reached.

If the agreement is reached at time t , the outcome is (x0, x1, . . . , xn; t).Wewill only
workwith the casewhere payoffs are nonnegative. Pi has preferences over payoff-time
pairs (xi , t) ∈ R

2+. Assume that the preferences are represented by a transitive and
complete relation �i (with the usual convention for ≺i and ∼i ) which satisfies the
following axioms:

A1 (Continuity): If (x, t1) ≺i (y, t2), then there exist open neighborhoods of A
and B of (x, t1) and (y, t2) , respectively, such that (x̃, t̃1) ≺i (ỹ, t̃2) for any
(x̃, t̃1) ∈ A and (ỹ, t̃2) ∈ B.

A2 (Desirability): For any t , if x < y then (x, t) ≺i (y, t).
A3 (Impatience): If x > 0 and t1 < t2, then (x, t1) �i (x, t2).
A4 (Stationarity): If (x, t1) ∼i (y, t2) then (x, t1 + r) ∼i (y, t2 + r) for any r .
A5 (Neuter): (0, t1) ∼i (0, t2) for any t1, t2.

For any t � 0 and x � 0, let (x, t) ∼i (pi (x, t), 0) . Then pi (x, t) represents player
i’s subjective present value of payoff x received at t . Impatience can bemeasured by the
delay premium x − pi (x, t). Chae and Yang (1994) introduces an n-person bargaining
solution that generalizes Rubinstein’s (1982) solution as one that equalizes the delay
premium across players. For such a solution to exist, another axiom is required:

A6 (Monotonicity of Delay Premium): x − pi (x, t) increases in x for any t > 0.

For the main result of this paper, we will focus on preferences that satisfy a stronger
axiom:
A6* (Linearity of Present Value): pi (x, t) = ρi

t x for some ρi such that 0 < ρi < 1.
If the present value is linear in x , the delay premium is also linear in x :

x − pi (x, t) = (1 − ρi
t )x .

Fishburn andRubinstein (1982) show that a preference relation that satisfies axioms
A1–A5 can be represented by a utility function of the formUi (x, t) = δi

t ui (x), where
0 < δi < 1. With this utility representation, one has

pi (x, t) = u−1
i (δi

t ui (x)),

and the linearity of the present value means4

ui (x) = xai for some ai > 0,

for then
pi (x, t) = ρi

t x,

where

ρi = δ

1
ai
i .

4 See Appendix for the proof of utility representation.
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Note that there can be multiple combinations of utility parameters δi and ai that yield
the same preference parameter ρi .5

We will consider a bargaining protocol where there exists an anchor player who
engages with each of the other players in a sequence of bilateral bargaining. Thus we
define a bargaining game G(π, t, P0; P1, . . . , Pn) with total pie π(≥ T0 + ∑n

i=1 Ti ),
starting period t (= 0, 1, . . . ,∞)6, an anchor player P0 and n non-anchor players
P1, . . . , Pn recursively as follows:

If n = 0, the game G(π, t, P0; P1, . . . , Pn) is a trivial one-person game where
P0 receives the payoff x0 = (1 − τ0)(π − T0) in period t . Let n ≥ 1. If π =
T0 +∑n

i=1 Ti , G(π, t, P0; P1, . . . , Pn) is a trivial game where players receive payoffs
(0, 0, . . . , 0) in period t . Let π > T0 + ∑n

i=1 Ti . In period t , P0 offers P1 ’s share s1
∈ [T1, π − (T0 + ∑n

i=2 Ti )] to P1. If P1 accepts the offer, then the remaining game
becomes G(π − s1, t, P0; P2, . . . , Pn), where π − s1 ≥ T0 + ∑n

i=2 Ti . If P1 rejects
the offer, then the game moves to the period t + 1, and P1 proposes his own share s1
∈ [T1, π − (T0 + ∑n

i=2 Ti )] to P0.7 If P0 accepts P1’s demand, then the remaining
game becomes G(π − s1, t + 1, P0; P2, . . . , Pn). If P0 rejects P1’s demand, then
the remaining game becomes G(π, t +2, P0; P1, . . . , Pn). This bargaining procedure
continues recursively until only the anchor player remains, that is, until agreements are
reached between the anchor player and all non-anchor players. If bargaining does not
end in finite periods, no player receives any payment. This outcome is denoted (0,∞),
and we assume that (0, t) ∼i (0,∞) for any t , for any Pi . The game G(π, t, P0; P1)

is a standard Rubinstein game with two players P0 and P1, where player P0 is the
initial proposer, if T0 = T1 = 0 and τ0 = τ1 = 0.

Put

ri = 1 − ρi

1 − ρ0ρi
,

r̂i = 1 − ρ0

1 − ρ0ρi

for i = 1, . . . , n.

Theorem 1 Suppose that the intertemporal preferences of the players P0, P1, . . . , Pn

satisfy A1–A5 and A6*. The n-person game G(π, t, P0; P1, . . . , Pn) has a unique
perfect equilibrium with the outcome (x0, x1, . . . , xn; t), where

x0 = (1 − τ0)

⎧
⎨

⎩
π −

⎛

⎝T0 +
n∑

j=1

Tj

⎞

⎠

⎫
⎬

⎭

n∏

j=1

r j

5 Thus the essential preference parameter is ρi , not δi and ai .
6 Each period t is regarded as a discrete time point t .
7 Chae and Yang (1992) analyze a bargaining process with alternating demands.
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and

xi = (1 − τi )

⎧
⎨

⎩
π −

⎛

⎝T0 +
n∑

j=1

Tj

⎞

⎠

⎫
⎬

⎭

⎛

⎝
i−1∏

j=1

r j

⎞

⎠ (1 − ri ) for i = 1, . . . , n.

Proof We will use mathematical induction. The theorem is trivially true for n = 0.8

Suppose that the theorem is true for n = k − 1 (≥ 0). We will show that the theorem
is true for n = k. If P0 and P1 reach an agreement at time t ′ to split the pie as (s0, s1),
where s0 ≥ T0 + ∑k

j=2 Tj , s1 ≥ T1, and s0 + s1 = π , then the remaining subgame
becomes a k-person game G(s0, t ′, P0; P2, . . . , Pk). Since the theorem is true for
n = k − 1, we know that in the unique perfect equilibrium of this k-person subgame,
the agreement is reached at time t ′ and P0’s payoff is

(1 − τ0)

{

s0 −
(

T0 +
k∑

i=2

Ti

)}
k∏

j=2

r j ≡ φ0(s0). (1)

Thus we can replace this subgame by the outcome (φ(s0), ψ(s1), t ′), where

ψ(s1) = (1 − τ1)(s1 − T1)

to obtain a two-person game between P0 and P1. In this modified game, P0 and P1
bargain over shares (s0, s1) such that s0 + s1 = π and s1 ∈ [T1, π − (T0 +∑k

i=2 Ti )].
Consider an equivalent game,where P0 and P1 bargain over normalized shares (σ0, σ1)

such that σ0 + σ1 = 1 and σ1 ∈ [0, 1], where

σ0 =
s0 −

(
T0 + ∑k

j=2 Tj

)

π −
(

T0 + ∑k
j=1 Tj

) ≡ f (s0),

σ1 = s1 − T1

π −
(

T0 + ∑k
j=1 Tj

) ≡ g(s1).

Put

α(σ0) = φ( f −1(σ0)) = σ0(1 − τ0)

⎧
⎨

⎩
π −

⎛

⎝T0 +
k∑

j=1

Tj

⎞

⎠

⎫
⎬

⎭

k∏

j=2

r j ,

β(σ1) = ψ(g−1(σ0)) = σ1(1 − τ1)

⎧
⎨

⎩
π −

⎛

⎝T0 +
k∑

j=1

Tj

⎞

⎠

⎫
⎬

⎭
.

8 It is a standard convention that
∑0

j=1 Ti = 0 and
∏0

j=1 r j = 1.
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Define preferences ≺α
0 over (σ0, t) ∈ [0, 1] × R+ by

(σ0, t) ≺α
0 (σ ′

0, t ′) if and only if (α(σ0), t) ≺0 (α(σ ′
0), t ′),

and preferences ≺β
1 over (σ1, t) ∈ [0, 1] × R+ by

(σ1, t) ≺β
1 (σ ′

1, t ′) if and only if (β(σ1), t) ≺1 (β(σ ′
1), t ′).

It is obvious that ≺α
0 and ≺β

1 satisfy axioms A1–A5. We will now show that they also
satisfy axiomA6. For P0, the present value pα

0 (σ0, t) of his normalized share is defined
from

(σ0, t) ∼α
0 (pα

0 (σ0, t), 0),

i.e,
(α(σ0), t) ∼0 (α(pα

0 (σ0, t)), 0).

Since (α(σ0), 1) ∼0 (α(pα
0 (σ0, 1)), 0), one has

α(pα
0 (σ0, 1)) = p0(α(σ0), 1)),

i.e.,
pα
0 (σ0, 1) = α−1(ρ0α(σ0)) = ρ0σ0.

Similarly, one has
pβ
1 (σ1, 1) = ρ1σ1.

Thus the preferences ≺α
0 and ≺β

1 satisfy axiom A6 (indeed, A6*). From Rubinstein
(1982), it follows that there exists a unique perfect equilibrium with the outcome
(σ0, σ1; 0) = (v, pβ

1 (w, 1); 0), where v and w satisfy the equation system

v + pβ
1 (w, 1) = 1,

pα
0 (v, 1) + w = 1,

i.e.,

v + ρ1w = 1,

ρ0v + w = 1.

One has

v = r1,

w = r̂1,
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and thus

x0 = α(v) = (1 − τ0)

⎧
⎨

⎩
π −

⎛

⎝T0 +
k∑

j=1

Tj

⎞

⎠

⎫
⎬

⎭

k∏

j=1

r j

x1 = β(pβ
1 (w, 1)) = (1 − τ1)

⎧
⎨

⎩
π −

⎛

⎝T0 +
k∑

j=1

Tj

⎞

⎠

⎫
⎬

⎭
(1 − r1)

From the induction hypothesis, one also has

xi = (1 − τi )

{

f −1(r1) −
(

T0 +
∑k

i=2
Ti

)}
⎛

⎝
i−1∏

j=2

r j

⎞

⎠ (1 − ri )

= (1 − τi )

{

π −
(

T0 +
∑k

i=1
Ti

)}
⎛

⎝
i−1∏

j=1

r j

⎞

⎠ (1 − ri )

for i = 2, . . . , k. 
�
For a structural understanding of the theorem, let us now look at the theorem

from the standpoint of an arbitrary time point during the bargaining process, taking
the risk that some arguments in the proof are replicated here. Consider a situation
where the anchor player P0 has already reached agreement with non-anchor players
P1, . . . , Pi−1 for their shares s1, . . . , si−1. Let vi−1 = π − (s1 + · · · + si−1) (≥
T0 + ∑n

j=i Tj ) be the residual pie. The remaining game is an (n − i + 2)-person
game G(vi−1, t, P0; Pi , . . . , Pn). In this game, P0 initially bargains with Pi , taking
into account the effect of reaching agreement for Pi ’s share si ∈ [Ti , vi−1 − (T0 +∑n

j=i+1 Tj )] on the remaining gameG(vi , t, P0; Pi+1, . . . , Pn), where vi = vi−1−si .
In other words, in order to bargain with Pi , the anchor player P0 needs to know the
outcome of G(vi , t, P0; Pi+1, . . . , Pn).

By backwardmathematical induction, the anchor player P0 realizes that this remain-
ing game will be resolved immediately with the outcome (x0, xi+1, . . . , xn; t), where

x0 = (1 − τ0)

⎧
⎨

⎩
vi −

⎛

⎝T0 +
n∑

j=i+1

Tj

⎞

⎠

⎫
⎬

⎭

n∏

j=i+1

r j ≡ φi (vi ).

Thus from the standpoint of P0 and Pi , the (n − i + 1)-person subgames G(vi−1 −
si , t, P0; Pi+1, . . . , Pn) for all possible values of si ∈ [Ti , vi−1 − (T0 + ∑n

j=i+1 Tj )]
can be replaced by their outcomes (φi (vi−1 − si ), ψi (si ), t), where

ψi (si ) = (1 − τi )(si − Ti ),

resulting in a two-person game Ĝ(vi−1, t, P0; Pi ).
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Solving the game Ĝ(vi−1, t, P0; Pi ), where two players P0 and Pi split the pie vi−1
into (s0, si ) such that s0+ si = vi−1 and si ∈ [Ti , vi−1− (T0+∑n

j=i+1 Tj )] is exactly
the same as solving the game Ĝ(π, t, P0; P1) in the proof of the theorem when we
substitute vi−1 = π and i = 1. Let vi be P0’s share in the perfect equilibrium of the
two-person game Ĝ(vi−1, t, P0; Pi ) andwi be Pi ’s share in the perfect equilibrium of
a two-person game which is the same as Ĝ(vi−1, t, P0; Pi ) except that Pi makes the
first proposal. Then, with obvious notation for the present value functions pφi

0 (s0, t)

and pψi
i (si , t) for shares s0 and si , the perfect equilibrium outcome of the two-person

game Ĝ(vi−1, t, P0; Pi ) is (s0, si ; t) = (vi , pψi
i (wi , 1); t), where vi and wi satisfy

the equation system

vi + pψi
i (wi , 1) = vi−1,

pφi
0 (vi , 1) + wi = vi−1.

In particular, the solution equalizes the delay premium between the two players:

vi − pφi
0 (vi , 1) = wi − pψi

i (wi , 1),

i.e.,

(1 − ρ0)

⎛

⎝vi − T0 −
n∑

j=i+1

Tj

⎞

⎠ = (1 − ρi )(wi − Ti ).

If we compare P0’s delay premium in the i-th stage of the (n + 1) -person game
G(π, t, P0; P1, . . . , Pn),

(1 − ρ0)

⎧
⎨

⎩
vi −

⎛

⎝T0 +
n∑

j=i+1

Tj

⎞

⎠

⎫
⎬

⎭
,

with P0’s delay premium in the standard two-person game G(vi−1, t, P0; Pi ) game,

(1 − ρ0)(vi − T0),

the only difference is T0 + ∑n
j=i+1 Tj vs. T0. When P0 and Pi bargain taking into

account of the fact that P0 has to further bargain with Pi+1, . . . , Pn , it effectively
changes P0’s lump-sum transfer from T0 to T0 + ∑n

j=i+1 Tj .
If

∑n
j=i+1 Tj = 0, then the shares of P0 and Pi in the i-th stage of the (n+1)-person

game G(π, t, P0; P1, . . . , Pn) coincides with the unique subgame perfect equilibrium
agreement for the two-persongameG(vi−1, t, P0; Pi ). That the anchor player P0 has to
further bargainwith subsequent players Pi+1, . . . , Pn over the split of s0 = vi−1 has no
influence on P0’s bargaining with Pi .9 If

∑n
j=i+1 Tj �= 0, however, the outcome of the

9 This is evident from the expression for xi (inTheorem1),which includes Tj and r j only for j = 0, 1, . . . , i
when

∑n
j=i+1 Tj = 0.
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bargaining between P0 and Pi depends on the transfers Ti+1, . . . , Tn of Pi+1, . . . , Pn .
If

∑n
j=i+1 Tj > 0, the existence of subsequent non-anchor players Pi+1, . . . , Pn

hurts the current non-anchor player Pi . If, however,
∑n

j=i+1 Tj < 0, then Pi actually
benefits from their existence.

It is interesting to note that the players bargain as if there is a well-defined net
surplus to be divided among all players, i.e., π − (T0 + ∑n

j=1 Tj ), even though the
players do not bargain simultaneously but sequentially. In particular, lump-sum trans-
fers are fully shared by all players. This property is most likely due to our assumption
that intertemporal preferences are such that present value is linear in the size of the
stake. It is certainly convenient for our analysis but not necessarily a general principle
to rely on.

The theorem also shows that in contrast to a lump-sum transfer, which is shared
jointly by all players, a proportional transfer affects only the player that has tomake that
transfer. Consider the case where the lump-sum transfers are zero (T0 = T1 = · · · =
Tn = 0) and the proportional transfer is actually a proportional tax. In this case, the
burden of the tax falls completely on the taxed party. Chae (2002) studies tax incidence
with a Nash solution, which is the limit of the outcome of a two-person Rubinstein
bargainingmodel. He shows that the burden of a tax falls completely on the taxed party,
if the taxed party has constant relative risk aversion (≤ 1), zero opportunity cost, and
zero initial wealth. Our result generalizes his result to an n-person, non-limiting case.

The theorem shows that at each stage the anchor player P0 and the non-anchor
player Pi splits what is remaining of the net surplus {π − (T0 +∑n

j=1 Tj )} ∏i−1
j=1 r j in

the ratio ri : 1−ri . In the symmetric casewhere all players have the same intertemporal
preferences, we have

Corollary 1 Suppose that there exists some ρ such that

ρi = ρ for i = 0, 1, . . . , n.

Then the equilibrium payoffs are

x0 = (1 − τ0)

⎛

⎝π −
n∑

j=0

Tj

⎞

⎠ 1

(1 + ρ)n

and

xi = (1 − τi )

⎛

⎝π −
n∑

j=0

Tj

⎞

⎠ ρ

(1 + ρ)i
for i = 1, . . . , n.

The corollary says that in the symmetric case, at each stage, the anchor player
P0 and the non-anchor player Pi split what is remaining of the net surplus (π −∑n

j=0 Tj )
1

(1+ρ)i−1 in the ratio 1 : ρ.

Corollary 2 Suppose that there are no third-party transfers: T0 = T1 = · · · = Tn = 0,
τ0 = τ1 = · · · = τn = 0. In the limiting case where ρ → 1, one has
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x0 = 1

2n
π

and

xi = 1

2i
π for i = 1, . . . , n.

In the limiting symmetric case where impatience disappears, P1 takes one half of
the pie, and each one after P1 also takes one half of what is remaining of the pie. The
last non-anchor player Pn and the anchor player P0 each take one half of what is left
of the pie at the last stage. The following fairy-tale story may provide some intuition
for the result:

“A boy wants to get to treasures in a secret garden. In order to reach the secret
garden, the boy has to go through a series of gates. At each gate, a monster
demands a share of the treasures in return for letting the boy through. The boy
and the monster have the same degrees of impatience so that the boy has to
promise to yield one half of what is remaining of the treasures to the monster to
get through the gate.”

The boy in the story will end up with only a tiny fraction of treasures after giving
one half of the current amount of treasures to the gate-keeping monster at each gate.
The most advantageous position is that of the monster at the first gate.

3 Concluding remarks

The bargaining protocol introduced in this paper can be used in a bargaining situation
where one player faces hierarchical opponents to negotiate with. The core nature
of the protocol is that the anchor negotiator can move to the next negotiation only
after completing the current negotiation. We proved that there exists a unique perfect
equilibrium of the game under certain assumptions on the intertemporal preferences
of the players. In particular, we assumed that the players’ preferences are such that
the present value is linear in the size of the stake.

With third-party transfers, we showed that lump-sum transfers are jointly shared
by all players, while a proportional transfer only affects the player who is obliged to
make the transfer. With only proportional transfers and zero lump-sum transfers, an
anchor player and each non-anchor player bargain as if there is no further bargaining.

We also demonstrated that with the hierarchical anchored bargaining protocol we
introduced, the anchor player and the last non-anchor player are in the most disad-
vantageous position, while the first non-anchor player is in the most advantageous
position. Obviously, in this kind of a situation, if players have any choice, they would
like to become the first non-anchor player rather than an anchor player. Given that
many real-life multiple-party bargaining procedures use a fixed mediator and sequen-
tial bargaining, resembling the protocol in the current paper, there is some explanation
to do. Within the framework of our model, one explanation could be that there is a
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large subsidy (T < 0) for an anchor player so that the anchor player has an incen-
tive to secure agreements from other parties even though the anchor player has to
share his subsidy with other players. There may be, however, other explanations not
based on our model. Analyzing alternative models would be useful in broadening
our understanding of the prevalence of sequential bargaining procedures with a fixed
mediator.

In the current work, we dealt with a pure bargaining situation, where there is one
fixed pie that could be split among all players only with a unanimous agreement. One
extension would be to endogenize the pie to be split between the anchor player and a
non-anchor player at each stage of the bargaining game. In such a model, one could
investigate the efficiency of allocations with sequential bargaining.
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Appendix

Proposition 1 A preference relation � over (x, t) ∈ R
2+ that satisfies axioms A1–A5

and A6* can be represented by a utility function u(x, t) = δt u(x) where 0 < δ < 1
and u(x) = xα for some α > 0.

Proof By Fishburn and Rubinstein (1982), a preference relation � over (x, t) that
satisfies axioms A1–A5 can be represented by u(x, t) = δt u(x) where 0 < δ < 1 and
u(x) is a continuous and increasing real-valued function. If A6* is satisfied, one has

u(ρt x) = δt u(x).

Without loss of generality, we may assume u(1) = 1. Then one has for y ≥ 0

u(ρ y) = δy .

For y < 0, let y = −t for t > 0. Then

1 = u(1) = u(ρtρ y) = δt u(ρ y)

and thus
u(ρ y) = δ−t = δy .

We have shown that for any y ∈ R

u(ρ y) = δy .

Now, let ρ y = x , then u(x) = xα where α = logρδ. 
�
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